skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Arctic Black Carbon Loading and Profile Using the Single-Particle Soot Photometer (SP2) Field Campaign Report

Technical Report ·
DOI:https://doi.org/10.2172/1253895· OSTI ID:1253895
 [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)

One of the major issues confronting aerosol climate simulations of the Arctic and Antarctic cryospheres is the lack of detailed data on the vertical and spatial distribution of aerosols with which to test these models. This is due, in part, to the inherent difficulty of conducting such measurements in extreme environments. However given the pronounced sensitivity of the polar regions to radiative balance perturbations, it is incumbent upon our community to better understand and quantify these perturbations, and their unique feedbacks, so that robust model predictions of this region can be realized. One class of under-measured radiative forcing agents in the polar region is the absorbing aerosol—black carbon and brown carbon. Black carbon (BC; also referred to as light-absorbing carbon [LAC], refractory black carbon [rBC], and soot) is second only to CO2 as a positive forcing agent. Roughly 60% of BC emissions can be attributed to anthropogenic sources (fossil fuel combustion and open-pit cooking), with the remaining fraction being due to biomass burning. Brown carbon (BrC), a major component of biomass burning, collectively refers to non-BC carbonaceous aerosols that typically possess minimal light absorption at visible wavelengths but exhibit pronounced light absorption in the near-ultraviolet (UV) spectrum. Both species can be sourced locally or be remotely transported to the Arctic region and are expected to perturb the radiative balance. The work conducted in this field campaign addresses one of the more glaring deficiencies currently limiting improved quantification of the impact of BC radiative forcing in the cryosphere: the paucity of data on the vertical and spatial distributions of BC. By expanding the Gulfstream aircraft (G-1) payload for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility-sponsored ACME-V campaign to include the Single-Particle Soot Photometer (SP2)) and leveraging the ACME-V campaign’s deployment within the Arctic Circle during the summer of 2015 (Deadhorse, Alaska [70° 12' 20" N, 148° 30' 42" W]), the truly unique opportunity presented itself to acquire profile data on BC loading at little additional cost. Since the SP2 is a particle-resolved measurement, the resulting data set provides refractory black carbon (rBC) mass loadings, size and mass distributions, and rBC-containing particle mixing state, all of which are expected to readily find value in the modeling community. As part of the ACME-V (http://www.arm.gov/campaigns/aaf2014armacmev) campaign, CO, CO2, and CH4 were also measured, providing the unique opportunity for carbon closure. We will also work closely with modelers who require such data and expect this collaboration will lead directly to a better understanding of the climate impacts of BC in the Arctic. The primary measurement objective was to acquire airborne data on the vertical and spatial distributions of refractory black carbon (rBC) loading, size and mass distribution, and particle mixing state. The primary scientific objective was to provide a targeted data set of rBC particle distributions to better understand and constrain the impact of black carbon radiative forcing in the cryosphere. The SP2-based data set during this campaign is available in the DOE-ARM archive (http://www.arm.gov/campaigns/aaf2015abclp).

Research Organization:
DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
DOE Contract Number:
AC05-7601830
OSTI ID:
1253895
Report Number(s):
DOE/SC-ARM-16-030
Country of Publication:
United States
Language:
English

Similar Records

Black Carbon at the Mt. Bachelor Observatory Field Campaign Report
Technical Report · Wed Mar 01 00:00:00 EST 2017 · OSTI ID:1253895

Formation of Refractory Black Carbon by SP2-Induced Charring of Organic Aerosol
Journal Article · Fri Nov 02 00:00:00 EDT 2018 · Aerosol Science and Technology · OSTI ID:1253895

ACMEV-SP2 (Single Particle Soot Photometer)
Dataset · Mon Jun 01 00:00:00 EDT 2015 · OSTI ID:1253895