skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantification and Controls of Wetland Greenhouse Gas Emissions

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/1253695· OSTI ID:1253695
 [1]
  1. Univ. of California, Berkeley, CA (United States)

Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for decomposition in a 1 km2 restored wetland in the Sacramento Delta. By coupling flux measurements at multiple-scales with remote sensing imagery I showed that large methane emissions produce an overall climate warming effect from the wetland for the next several centuries, despite relatively high productivity. I also used radiocarbon analyses of wetland sediment carbon dioxide and methane to show that both bulk peat and recently fixed carbon contribute to decomposition in the wetland, and that their relative importance is regulated by proximity to, and the phenological cycles of, emergent vegetation.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC52-07NA27344; #2053; DEB-1405715; CA-B-ECO-7673-MS
OSTI ID:
1253695
Report Number(s):
LLNL-TH-691520
Country of Publication:
United States
Language:
English