skip to main content

Title: Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites - FY 2014 Fourth Quarterly Report

During the last quarter of FY 2014, the following technical progress has been made toward project milestones: 1) Autodesk, Inc. (Autodesk) has implemented a new fiber length distribution (FLD) model based on an unbreakable length assumption with Reduced Order Modeling (ROM) by the Proper Orthogonal Decomposition (POD) approach in the mid-plane, dual-domain and 3D solvers. 2) Autodesk improved the ASMI 3D solver for fiber orientation prediction using the anisotropic rotary diffusion (ARD) – reduced strain closure (RSC) model. 3) Autodesk received consultant services from Prof. C.L. Tucker at the University of Illinois on numerical simulation of fiber orientation and fiber length. 4) PlastiComp, Inc. (PlastiComp) suggested to Purdue University a procedure for fiber separation using an inert-gas atmosphere in the burn-off furnace. 5) Purdue University (Purdue) hosted a face-to-face project review meeting at Purdue University on August 6-7, 2014. 6) Purdue conducted fiber orientation measurements for 3 PlastiComp plaques: fast-fill 30wt% LCF/PP edged-gated, slow-fill 50wt% LCF/PP edge-gated, and slow-fill 50wt% LCF/PP center-gated plaques, and delivered the orientation data for these plaques at the selected locations (named A, B, and C) to PNNL. 7) PNNL conducted ASMI mid-plane analyses for the above PlastiComp plaques and compared the predicted fiber orientations withmore » the measured data provided by Purdue at Locations A, B, and C on these plaques. 8) PNNL planned the project review meeting (August 6-7, 2014) with Purdue. 9) PNNL performed ASMI analyses for the Toyota complex parts with and without ribs, having different wall thicknesses, and using the PlastiComp 50wt% LCF/PP, 50wt% LCF/PA66, 30wt% LCF/PP, and 30wt% LCF/PA66 materials to provide guidance for tool design and modifications needed for molding these parts. 10) Magna Exteriors and Interiors Corp. (Magna) molded plaques from the 50% LCF/PP and 50% LCF/PA66 materials received from Plasticomp in order to extract machine purgings (purge materials) from Magna’s 200-Ton Injection Molding machine targeted to mold the complex part. 11) Toyota and Magna discussed with PNNL tool modification for molding the complex part.« less
 [1] ;  [1] ;  [2] ;  [3] ;  [3] ;  [4] ;  [4] ;  [4] ;  [5] ;  [6] ;
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. PlastiComp, Inc., Winona, MN (United States)
  3. Purdue Univ., West Lafayette, IN (United States)
  4. Autodesk, Inc., Ithaca, NY (United States)
  5. MAGNA Exteriors and Interiors Corp, Aurora, ON (Canada)
  6. Univ. of Illinois, Champaign, IL (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org:
Country of Publication:
United States
36 MATERIALS SCIENCE Injection molding; long fiber thermoplastic; carbon fiber; process modeling; fiber orientation; fiber length; elastic modulus; flexural modulus