skip to main content

Title: Metallic behavior in the graphene analogue Ni 3(HITP) 2 and a strategy to render the material a semiconductor.

The metal organic framework material Ni 3(2,3,6,7,10,11 - hexaiminotriphenylene) 2, (Ni 3(HITP) 2) is composed of layers of extended conjugated planes analogous to graphene. We carried out Density functional theory (DFT) calculations to model the electronic structure of bulk and monolayer Ni 3(HITP) 2. The layered 3D material is metallic, similar to graphene. Our calculations predict that there is appreciable band dispersion not only in-plane, but perpendicular to the stacking planes as well, suggesting that, unlike graphene, the conductivity may be nearly isotropic. In contrast, a 2D monolayer of the material exhibits a band gap, consistent with previously published results. Insight obtained from studies of the evolution of the material from semiconducting to metallic as the material is transitioned from 2D to 3D suggests the possibility of modifying the material to render it semiconducting by changing the metal center and inserting spacer moieties between the layers. Furthermore, the DFT calculations predict that the modified material will be structurally stable and exhibit a band gap.
 [1] ;  [2] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  2. Drexel Univ., Philadelphia, PA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1932-7447; 619121
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 120; Journal Issue: 27; Journal ID: ISSN 1932-7447
American Chemical Society
Research Org:
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
Country of Publication:
United States