skip to main content

Title: FInal Report: First Principles Modeling of Mechanisms Underlying Scintillator Non-Proportionality

This final report presents work carried out on the project “First Principles Modeling of Mechanisms Underlying Scintillator Non-Proportionality” at Lawrence Livermore National Laboratory during 2013-2015. The scope of the work was to further the physical understanding of the microscopic mechanisms behind scintillator nonproportionality that effectively limits the achievable detector resolution. Thereby, crucial quantitative data for these processes as input to large-scale simulation codes has been provided. In particular, this project was divided into three tasks: (i) Quantum mechanical rates of non-radiative quenching, (ii) The thermodynamics of point defects and dopants, and (iii) Formation and migration of self-trapped polarons. The progress and results of each of these subtasks are detailed.
Authors:
 [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
1252609
Report Number(s):
LLNL-TR--689786
TRN: US1601360
DOE Contract Number:
AC52-07NA27344
Resource Type:
Technical Report
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; PHOSPHORS; SCINTILLATION COUNTERS; COMPUTERIZED SIMULATION; POINT DEFECTS; DOPED MATERIALS; QUANTUM MECHANICS; POLARONS; DIFFUSION; SCINTILLATION QUENCHING; RESOLUTION; THERMODYNAMICS; TRAPPING