skip to main content

Title: Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications

This paper presents a nonlinear analytical model of a novel double sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets (PM), stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry which makes it a good alternative for evaluating prospective designs of TFM as compared to finite element solvers which are numerically intensive and require more computation time. A single phase, 1 kW, 400 rpm machine is analytically modeled and its resulting flux distribution, no-load EMF and torque, verified with Finite Element Analysis (FEA). The results are found to be in agreement with less than 5% error, while reducing the computation time by 25 times.
; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Presented at the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 20-24 September 2015, Montreal, Quebec, Canada; Related Information: Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 20-24 September 2015, Montreal, Quebec, Canada
Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE)
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Technologies Office (EE-4W)
Country of Publication:
United States
17 WIND ENERGY; 24 POWER TRANSMISSION AND DISTRIBUTION; transverse flux machine (TFM); nonlinear; magnetic equivalent circuit (MEC); magnetic saturation; flux concentrating; finite element analysis (FEA)