skip to main content

Title: Experimental Evaluation of Load Rejection Over-Voltage from Grid-Tied Solar Inverters

This paper investigates the impact of load rejection over-voltage (LRO) from commercially available grid-tied photovoltaic (PV) inverters. LRO can occur when a breaker opens and the power output from a distributed energy resource (DER) exceeds the load. Simplified models of current-controlled inverters can over-predict LRO magnitudes, thus it is useful to quantify the effect through laboratory testing. The load rejection event was replicated using a hardware testbed at the National Renewable Energy Laboratory (NREL), and a set of commercially available PV inverters was tested to quantify the impact of LRO for a range of generation-to-load ratios. The magnitude and duration of the over-voltage events are reported in this paper along with a discussion of characteristic inverter output behavior. The results for the inverters under test showed that maximum over-voltage magnitudes were less than 200% of nominal voltage, and much lower in many test cases. These research results are important because utilities that interconnect inverter-based DER need to understand their characteristics under abnormal grid conditions.
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Presented at the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 14-19 June 2015, New Orleans, Louisiana; Related Information: Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 14-19 June 2015, New Orleans, Louisiana
Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE)
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
Country of Publication:
United States
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; inverter; photovoltaics; electric power systems; load rejection over-voltage; distributed energy