skip to main content

Title: Photoluminescence Imaging of Large-Grain CdTe for Grain Boundary Characterization

In this work, we use photoluminescence (PL) imaging to characterize CdTe grain boundary recombination. We use a silicon megapixel camera and green (532 nm) laser diodes for excitation. A microscope objective lens system is used for high spatial resolution and a field of view down to 190 um x 190 um. PL images of large-grain (5 to 50 um) CdTe samples show grain boundary and grain interior features that vary with processing conditions. PL images of samples in the as-deposited state show distinct dark grain boundaries that suggest high excess carrier recombination. A CdCl2 treatment leads to PL images with very little distinction at the grain boundaries, which illustrates the grain boundary passivation properties. Other process conditions are also shown, along with comparisons of PL images to high spatial resolution time-resolved PL carrier lifetime maps.
; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Presented at the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 14-19 June 2015, New Orleans, Louisiana; Related Information: Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 14-19 June 2015, New Orleans, Louisiana
Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE)
Research Org:
NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
14 SOLAR ENERGY; 36 MATERIALS SCIENCE cadmium compounds; charge carrier lifetime; grain boundaries; imaging; photoluminescence; photovoltaic cells; tellurium