skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of Photovoltaic Module Soiling on Glass Surface Resistance and Potential-Induced Degradation

Conference ·

The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60 degrees C. Sea salt yielded a 3.5 orders of magnitude decrease in resistance on the glass surface when the RH was increased over this RH range. Arizona road dust showed reduced sheet resistance at lower RH, but with less humidity sensitivity over the range tested. The soot sample did not show significant resistivity change compared to the unsoiled control. Photovoltaic modules with sea salt on their faces were step-stressed between 25% and 95% RH at 60 degrees C applying -1000 V bias to the active cell circuit. Leakage current from the cell circuit to ground ranged between two and ten times higher than that of the unsoiled controls. Degradation rate of modules with salt on the surface increased with increasing RH and time.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1250666
Report Number(s):
NREL/CP-5J00-66358
Resource Relation:
Conference: Presented at the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 14-19 June 2015, New Orleans, Louisiana; Related Information: Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 14-19 June 2015, New Orleans, Louisiana
Country of Publication:
United States
Language:
English