skip to main content

SciTech ConnectSciTech Connect

Title: The Sinuous Target

We report on the concept for a target material comprised of a multitude of interlaced wires of small dimension. This target material concept is primarily directed at high-power neutrino targets where the thermal shock is large due to small beam sizes and short durations; it also has applications to other high-power targets, particularly where the energy deposition is great or a high surface area is preferred. This approach ameliorates the problem of thermal shock by engineering a material with high strength on the micro-scale, but a very low modulus of elasticity on the meso-scale. The low modulus of elasticity is achieved by constructing the material of spring-like wire segments much smaller than the beam dimension. The intrinsic bends of the wires will allow them to absorb the strain of thermal shock with minimal stress. Furthermore, the interlaced nature of the wires provides containment of any segment that might become loose. We will discuss the progress on studies of analogue materials and fabrication techniques for sinuous target materials.
Authors:
 [1]
  1. Fermilab
Publication Date:
OSTI Identifier:
1250538
Report Number(s):
FERMILAB-CONF-15-261-AD
1408686
DOE Contract Number:
AC02-07CH11359
Resource Type:
Conference
Resource Relation:
Conference: 6th International Particle Accelerator Conference, Richmond, Virginia, USA, 05/03-05/08/2015
Research Org:
Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY