skip to main content

Title: Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-edge X-ray Absorption Spectroscopy

Developing efficient water oxidation catalysts made of earth-abundant elements is a demanding challenge that should be met to fulfill the promise of water splitting for clean energy. Herein we report an annealing approach to synthesize binder-free, self-supported heterogeneous copper oxide (CuO) on conductive electrodes for oxygen evolution reaction (OER), producing electrodes with excellent electrocatalytic properties such as high efficiency, low overpotential, and good stability. The catalysts were grown in situ on fluorine-doped tin oxide (FTO) by electrodeposition from a simple Cu(II) salt solution, followed by annealing at a high temperature. Under optimal conditions, the CuO-based OER catalyst shows an onset potential of <0.58 V (vs Ag/AgCl) in 1.0 M KOH at pH 13.6. From the Tafel plot, the required overpotentials for current densities of 0.1 and 1.0 mA/cm2 are only 360 and 430 mV, respectively. The structure and the presence of a CuO motif in the catalyst have been identified by high-energy X-ray diffraction (HE-XRD), Cu K-edge X-ray absorption (XAS) spectra including X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS). To the best of our knowledge, this represents the best catalytic activity for CuO-based OER catalysts to date.
; ; ; ; ;
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physical Chemistry. C; Journal Volume: 120; Journal Issue: 2
American Chemical Society
Research Org:
Argonne National Laboratory (ANL)
Sponsoring Org:
National Natural Science Foundation of China (NSFC); USDOE Office of Science - Office of Basic Energy Sciences; Argonne National Laboratory - Advanced Photon Source
Country of Publication:
United States