skip to main content

Title: Laser Propagation in Nanostructured Ultra-Low-Density Materials

The nanostructure of very-low-density aerogels (< 10 mg/cm3) affects the laser heating and propagation of the subsequent heat front. Simulations treat these materials as an atomistic medium without any structure differentiating between near-solid-density material and voids. Thus, simulations fail to predict the effects of the aerogel’s physical micro or nanostructure on the laser-matter interaction. We have designed an experiment using the GEKKO XII laser and ILE diagnostics to characterize the ionization-wave propagation and x-ray yield from aerogel and mass-matched gaseous targets as the laser passes through each. By design, the gas and aerogel targets will have identical densities and identical effective ionization states.
Authors:
 [1] ;  [1] ;  [2] ;  [1] ;  [2] ;  [2] ;  [2] ;  [2] ;  [2] ;  [2]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Osaka Univ. (Japan). Inst. of Laser Engineering
Publication Date:
OSTI Identifier:
1247286
Report Number(s):
LLNL--TR-686321
DOE Contract Number:
AC52-07NA27344
Resource Type:
Technical Report
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 36 MATERIALS SCIENCE