skip to main content

Title: Feasibility study on ultralong-cycle operation and material performance for compact liquid metal-cooled fast reactors: a review work

This paper reviews the feasibility of ultralong-cycle operation on a compact liquid metal-cooled fast reactor (LMR) firstly by assessing the operation of a long-life fast reactor core and secondly by evaluating material performance in respect to both long-cycle operation and compact-size fast reactor. Many kinds of reactor concepts have been proposed, and LMR and small modular reactor (SMR) are the issued leading technologies for generation four (Gen-IV) reactor system development. The breed-and-burn strategy was proposed as a core burning strategy to operate a long cycle, and it has been evaluated in this paper with two reactor concepts: constant axial shape of neutron flux, nuclide densities, and power shape during life of energy and ultralong cycle fast reactor. In addition, Super-Safe, Small, and Simple and small modular fast reactor, compact LMR concepts, have been simulated to evaluate their long-life operation strategies. For the other practical issues, the materials for fuel, coolant, and structure have been identified and some of them are selected to have their performance optimized specifically for compact LMR with a long-cycle operation. It is believed that this comprehensive review will propose a proper direction for future reactor development and will be followed by the next step research formore » a complete reactor model with the other reactor components.« less
; ; ; ; ;
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Energy Research; Journal Volume: 39; Journal Issue: 14
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
National Research Foundation of Korea (NRF)
Country of Publication:
United States
SMR; long-cycle operation; LMR; breed-and-burn; material performance