skip to main content

Title: Autonomous management of a recursive area hierarchy for large scale wireless sensor networks using multiple parents

Large scale wireless sensor networks have been proposed for applications ranging from anomaly detection in an environment to vehicle tracking. Many of these applications require the networks to be distributed across a large geographic area while supporting three to five year network lifetimes. In order to support these requirements large scale wireless sensor networks of duty-cycled devices need a method of efficient and effective autonomous configuration/maintenance. This method should gracefully handle the synchronization tasks duty-cycled networks. Further, an effective configuration solution needs to recognize that in-network data aggregation and analysis presents significant benefits to wireless sensor network and should configure the network in a way such that said higher level functions benefit from the logically imposed structure. NOA, the proposed configuration and maintenance protocol, provides a multi-parent hierarchical logical structure for the network that reduces the synchronization workload. It also provides higher level functions with significant inherent benefits such as but not limited to: removing network divisions that are created by single-parent hierarchies, guarantees for when data will be compared in the hierarchy, and redundancies for communication as well as in-network data aggregation/analysis/storage.
Authors:
 [1] ;  [2]
  1. Washington State Univ., Pullman, WA (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
OSTI Identifier:
1245897
Report Number(s):
PNNL-SA--92903
Journal ID: ISSN 1570-8705; 453040075
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Ad Hoc Networks; Journal Volume: 39; Journal Issue: C
Publisher:
Elsevier
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; 97 MATHEMATICS AND COMPUTING