skip to main content

Title: OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes

What is an organic light emitting diode (OLED)? Why should we care? What are they made of? How are they made? What are the challenges in seeing these devices enter the marketplace in various applications? These are the questions we hope to answer in this book, at a level suitable for knowledgeable non-experts, graduate students and scientists and engineers working in the field who want to understand the broader context of their work. At the most basic level, an OLED is a promising new technology composed of some organic material sandwiched between two electrodes. When current is passed through the device, light is emitted. The stack of layers can be very thin and has many variations, including flexible and/or transparent. The organic material can be polymeric or composed small molecules, and may include inorganic components. The electrodes may consist of metals, metal oxides, carbon nanomaterials, or other species, though of course for light to be emitted, one electrode must be transparent. OLEDs may be fabricated on glass, metal foils, or polymer sheets (though polymeric substrates must be modified to protect the organic material from moisture or oxygen). In any event, the organic material must be protected from moisture during storagemore » and operation. A control circuit, the exact nature of which depends on the application, drives the OLED. Nevertheless, the control circuit should have very stable current control to generate uniform light emission. OLEDs can be designed to emit a single color of light, white light, or even tunable colors. The devices can be switched on and off very rapidly, which makes them suitable for displays or for general lighting. Given the amazing complexity of the technical and design challenges for practical OLED applications, it is not surprising that applications are still somewhat limited. Although organic electroluminescence is more than 50 years old, the modern OLED field is really only about half that age – with the first high-efficiency OLED demonstrated in 1987. Thus, we expect to see exciting advances in the science, technology and commercialization in the coming years. We hope that this book helps to advance the field in some small way. Contributors to this monograph are experts from top academic institutions, industry and national laboratories who provide comprehensive and up-to-date coverage of the rapidly evolving field of OLEDs. Furthermore, this monograph collects in one place, for the first time, key topics across the field of OLEDs, from fundamental chemistry and physics, to practical materials science and engineering topics, to aspects of design and manufacturing. The monograph synthesizes and puts into context information scattered throughout the literature for easy review in one book. The scope of the monograph reflects the necessity to focus on new technological challenges brought about by the transition to manufacturing. In the Section 1, all materials of construction of the OLED device are covered, from substrate to encapsulation. In Section 2, for the first time, additional challenges in devices and processing are addressed. This book is geared towards a broad audience, including materials scientists, device physicists, synthetic chemists and electrical engineers. Furthermore, this book makes a great introduction to scientists in industry and academia, as well as graduate students interested in applied aspects of photophysics and electrochemistry in organic thin films. This book is a comprehensive source for OLED R&D professionals from all backgrounds and institutions.« less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; « less
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Dan Gaspar, Evgueni Polikarpov; CRC Press/Taylor and Francis Group, Boca Raton, FL, United States(US).
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Org:
Country of Publication:
United States
OLED; organic emitting diode; polymeric