skip to main content

Title: Reductive deconstruction of organosolv lignin catalyzed by zeolite supported nickel nanoparticles

Mechanistic aspects of deconstruction and hydrodeoxygenation of organosolv lignin using supported Ni catalysts with (Ni/HZSM-5 and Ni/HBEA) and without Brønsted acid sites (Ni/SiO2) are reported. Lignin was deconstructed and converted to saturated cyclic hydrocarbons ranging from C5 to C14. In the one-stage reaction, full conversion with total yield of 70 ± 5 wt.% saturated hydrocarbons was achieved at 593 K and 20 bar H2. The organosolv lignin used consists of seven to eight monolignol subunits and has an average molecular weight of ca. 1200 g mol-1. The monolignols were mainly guaiacyl, syringyl and phenylcoumaran, randomly interconnected through β-O-4, 4-O-5, β-1, 5-5’ and β-β ether bonds. In situ IR spectroscopy was used to follow the changes in lignin constituents during reaction. The proposed reaction pathways for the catalytic transformation of this organosolv lignin to alkanes start with the hydrogenolysis of aryl alkyl ether bonds, followed by hydrogenation of the aromatic compounds on Ni to cyclic alcohols. Oxygen is removed from the alcohols via dehydration on Brønsted acid sites to yield cyclic alkenes that are further hydrogenated to alkanes. Formation of condensation products may occur via intermolecular recombination of aromatic monomers or alkylation of aromatic compounds by alkenes. The financial support frommore » TUM-PNNL cooperation project “Development of new methods for in situ characterization in liquid phase reactions” (CN-177939) is highly appreciated. The work by S.K., H.S., and J.A.L was partially supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.« less
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1463-9262; KC0302010
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Green Chemistry; Journal Volume: 17; Journal Issue: 11
Royal Society of Chemistry
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org:
Country of Publication:
United States