skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Complete wetting of Pt(111) by nanoscale liquid water films

Journal Article · · Journal of Physical Chemistry Letters

The melting and wetting of nanoscale crystalline ice films on Pt(111) that are transiently heated above the melting point using nanosecond laser pulses are studied with infrared refection absorption spectroscopy (IRAS) and Kr temperature programmed desorption (TPD). The as-grown crystalline ice films consist of isolated nanoscale ice crystallites embedded in a hydrophobic water monolayer. Upon heating above the melting point, these ice crystallites rapidly melt to form nanoscale droplets of liquid water. Rapid cooling of the system to cryogenic temperatures after each laser pulse quenches the water films and allows them to be interrogated with IRAS, Kr TPD and other ultrahigh vacuum surface science techniques. With each successive heat pulse, these liquid drops spread across the surface until it is entirely covered with multilayer water films after several pulses. These results, which show that nanoscale water films completely wet Pt(111), are in contrast to molecular dynamics simulations predicting partial wetting of nanoscale water drops on a hydrophobic water monolayer. The results provide valuable new insights into the wetting characteristics of nanoscale water films on a clean, well-characterized single crystal surface.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1243221
Report Number(s):
PNNL-SA-114918; KC0301050
Journal Information:
Journal of Physical Chemistry Letters, Vol. 7, Issue 3; ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English

Similar Records

Crystalline Ice Growth on Pt(111) and Pd(111): Nonwetting Growth on a Hydrophobic Water Monolayer
Journal Article · Wed Mar 21 00:00:00 EDT 2007 · Journal of Chemical Physics, 126(11):Art. No. 114702 · OSTI ID:1243221

Turning things downside up: Adsorbate induced water flipping on Pt(111)
Journal Article · Fri Nov 14 00:00:00 EST 2014 · Journal of Chemical Physics, 141(18):18C515 · OSTI ID:1243221

A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum
Journal Article · Tue Apr 26 00:00:00 EDT 2016 · Journal of Chemical Physics · OSTI ID:1243221

Related Subjects