skip to main content

Title: Properties of Alloy 617 for Heat Exchanger Design

Abstract – Alloy 617 is among the primary candidates for very high temperature reactor heat exchangers anticipated for use up to 950ºC. Elevated temperature properties of this alloy and the mechanisms responsible for the observed tensile, creep and creep-fatigue behavior have been characterized over a wide range of test temperatures up to 1000ºC. Properties from the current experimental program have been combined with archival information from previous VHTR research to provide large data sets for many heats of material, product forms, and weldments. The combined data have been analyzed to determine conservative values of yield and tensile strength, strain rate sensitivity, creep-rupture behavior, fatigue and creep- fatigue properties that can be used for engineering design of reactor components. Phenomenological models have been developed to bound the regions over which the engineering properties are well known or can be confidently extrapolated for use in design.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Idaho National Laboratory
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: HTR 2014, Weihai, China, 10/27/2014 - 10/31/2014
Research Org:
Idaho National Laboratory (INL), Idaho Falls, ID (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE)
Country of Publication:
United States
Alloy 617; high temperature properties