skip to main content

Title: Multiframe, Single Line-of-Sight X-Ray Imager for Burning Plasmas

The purpose of this LDRD project was to demonstrate high spatial and temporal resolution x-ray imaging using optical detectors, and in particular the VISAR and OHRV diagnostics on the OMEGA laser. The x-ray source being imaged was a backlighter capsule being imploded by 39 beams of the OMEGA laser. In particular this approach utilized a semiconductor with the side facing the backlighter capsule coated with a thin aluminum layer to allow x rays to pass through the metal layer and then get absorbed in the semiconductor. The other side of the semiconductor was AR coated to allow the VISAR or OHRV probe beam to sample the phase change of the semiconductor as the x rays were absorbed in the semiconductor. This technique is capable of acquiring sub-picosecond 2-D or 1-D x-ray images, detector spatial resolution of better than 10 um and the ability to operate in a high neutron flux environment expected on ignition shots with burning plasmas. In addition to demonstrating this technique on the OMEGA laser, several designs were made to improve the phase sensitivity, temporal resolution and number of frames over the existing diagnostics currently implemented on the OMEGA laser. These designs included both 2-d imaging diagnosticsmore » as well as improved 1-D imaging diagnostics which were streaked in time.« less
Authors:
 [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
1239221
Report Number(s):
LLNL--TR-681558
TRN: US1600560
DOE Contract Number:
AC52-07NA27344
Resource Type:
Technical Report
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; X RADIATION; SPATIAL RESOLUTION; SEMICONDUCTOR MATERIALS; ALUMINIUM; IMAGES; LASER-PRODUCED PLASMA; IGNITION; LAYERS; SENSITIVITY; PHOTON TRANSPORT