skip to main content

SciTech ConnectSciTech Connect

Title: On the Site-Decomposition of Magnetocrystalline Anisotropy Energy Using Ome-Electron Eigenstates

We discuss two di erent schemes for decomposing the magnetocrystalline anisotropy energy into atomic site-speci c contributions, and show that one of these, which uses projected single-particle states, is inherently ill-de ned in practical applications. We therefore argue that the other decomposition scheme, involving ground state matrix elements of the spin-orbit operator, is preferable for the numerical prediction of one-site contributions to the anisotropy.
Authors:
 [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
1239183
Report Number(s):
LLNL--TR-678619
DOE Contract Number:
AC52-07NA27344
Resource Type:
Technical Report
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY