skip to main content

Title: Further Development and Application of GEOFRAC-FLOW to a Geothermal Reservoir

GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristics of GEOFRAC are its use of statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E(A). This information can be obtained from boreholes or scanlines on the surface, on the one hand, and from window sampling of fracture traces on the other hand. In the context of this project, “Recovery Act - Decision Aids for Geothermal Systems”, GEOFRAC was further developed into GEOFRAC-FLOW as has been reported in the reports, “Decision Aids for Geothermal Systems - Fracture Pattern Modelling” and “Decision Aids for Geothermal Systems - Fracture Flow Modeling”. GEOFRAC-FLOW allows one to determine preferred, interconnected fracture paths and the flow through them.
 [1] ;  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Office (EE-4G)
Country of Publication:
United States
15 GEOTHERMAL ENERGY; 3D; modeling; stochastic; mechanical; hierarchical; Recovery Act