skip to main content

Title: In situ 7Li and 133Cs nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process

Application of Li metal electrode in rechargeable lithium battery is hindered by safety concerns due to dendritic growth on the electrode over several charge-discharge cycles. We have found previously that adding low concentration Cs+ in electrolytes can promote smooth deposition of lithium onto metal electrode during repeated charge-discharge cycling using idea Li|Cu battery without the using of a separator. In this work, quantitative in situ 7Li and 133Cs NMR investigations using real planar symmetric lithium battery cells with and without Cs+ additives were carried out. It is found that the deposited lithium atoms on electrodes are highly porous. Detailed analysis of the data were carried out by separating the 7Li signal from deposited lithium that was oriented parallel to the electrode surface with the signal from the Li-metal nanorodes oriented perpendicular or nearly perpendicular to the electrode surface. The results demonstrate that addition of Cs+ can significantly enhance both the formation of uniform Li nanorods, and the reversibility of electrode. In situ 133Cs NMR directly confirms that Cs+ migrates to the electrode to form a positively charged electrostatic shield during cycling process. Combining the quantitative analysis of the orientation dependent signals of deposited metal Li and previous ex-situ results, differentmore » Li deposition models are proposed. During cycling process, more “active” lithium participates in the Li transfer between the electrode and nanorods for the battery with Cs+, while for the battery without Cs+ more dead and thinker lithium rods are formed and Li transfer between dendrites from different electrodes dominates.« less
; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0378-7753; 44591; 48776; KC0208010
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Power Sources; Journal Volume: 304
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Environmental Molecular Sciences Laboratory