skip to main content

SciTech ConnectSciTech Connect

Title: Formation of Ultracold Molecules

Advances in our ability to slow down and cool atoms and molecules to ultracold temperatures have paved the way to a revolution in basic research on molecules. Ultracold molecules are sensitive of very weak interactions, even when separated by large distances, which allow studies of the effect of those interactions on the behavior of molecules. In this program, we have explored ways to form ultracold molecules starting from pairs of atoms that have already reached the ultracold regime. We devised methods that enhance the efficiency of ultracold molecule production, for example by tuning external magnetic fields and using appropriate laser excitations. We also investigates the properties of those ultracold molecules, especially their de-excitation into stable molecules. We studied the possibility of creating new classes of ultra-long range molecules, named macrodimers, thousand times more extended than regular molecules. Again, such objects are possible because ultra low temperatures prevent their breakup by collision. Finally, we carried out calculations on how chemical reactions are affected and modified at ultracold temperatures. Normally, reactions become less effective as the temperature decreases, but at ultracold temperatures, they can become very effective. We studied this counter-intuitive behavior for benchmark chemical reactions involving molecular hydrogen.
Authors:
 [1]
  1. Univ. of Connecticut, Storrs, CT (United States)
Publication Date:
OSTI Identifier:
1236250
Report Number(s):
DOE-UCONN--ER15734
8604864912
DOE Contract Number:
FG02-05ER15734
Resource Type:
Technical Report
Research Org:
Univ. of Connecticut, Storrs, CT (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS Ultracold molecules