skip to main content

This content will become publicly available on June 15, 2016

Title: Effect of twist on transverse impact response of ballistic fiber yarns

A Hopkinson bar was employed to conduct transverse impact testing of twisted Kevlar KM2 fiber yarns at the same impact speed. The speed of Euler transverse wave generated by the impact was measured utilizing a high speed digital camera. The study included fiber yarns twisted by different amounts. The Euler transverse wave speed was observed to increase with increasing amount of twist of the fiber yarn, within the range of this investigation. As a result, the higher transverse wave speeds in the more twisted fiber yarns indicate better ballistic performance in soft body armors for personal protection.
 [1] ;  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0734-743X; 566918
Grant/Contract Number:
Accepted Manuscript
Journal Name:
International Journal of Impact Engineering
Additional Journal Information:
Journal Volume: 85; Journal Issue: C; Journal ID: ISSN 0734-743X
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
42 ENGINEERING; transverse impact; ballistic fiber; twist; ballistic performance; Hopkinson bar