skip to main content

This content will become publicly available on November 27, 2015

Title: Structural modifications due to interface chemistry at metal-nitride interfaces

Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.
 [1] ;  [1] ;  [2] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Univ. of Nebraska-Lincoln, Lincoln, NE (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 2045-2322; srep17380
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 5; Journal ID: ISSN 2045-2322
Nature Publishing Group
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Country of Publication:
United States
36 MATERIALS SCIENCE; atomistic models; structural properties