skip to main content

This content will become publicly available on December 18, 2015

Title: Characterization of pseudosingle bunch kick-and-cancel operational mode

Pseudosingle-bunch kick-and-cancel (PSB-KAC) is a new operational mode at the Advanced Light Source of Lawrence Berkeley National Laboratory that provides full timing and repetition rate control for single x-ray pulse users while being fully transparent to other users of synchrotron radiation light. In this operational mode, a single electron bunch is periodically displaced from a main bunch train by a fast kicker magnet with a user-on-demand repetition rate, creating a single x-ray pulse to be matched to a typical laser excitation pulse rate. This operational mode can significantly improve the signal to noise ratio of single x-ray pulse experiments and drastically reduce dose-induced sample damage rate. It greatly expands the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In this paper, we carry out extensive characterizations of this PSB-KAC mode both numerically and experimentally. This includes the working principle of this mode, resonance conditions and beam stability, experimental setups, and diagnostic tools and measurements.
 [1] ;  [1] ;  [1] ;  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Published Article
Journal Name:
Physical Review Special Topics. Accelerators and Beams
Additional Journal Information:
Journal Volume: 18; Journal Issue: 12; Journal ID: ISSN 1098-4402
American Physical Society (APS)
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States