skip to main content

Title: Quantum Chemistry via Walks in Determinant Space

There are many chemical questions of practical interest to the DOE that could be answered if there were an electronic structure method that provided consistently accurate results for all systems at an affordable computational cost. The coupled cluster method with single, double and perturbative triple excitations (CCSD(T)) is the most frequently used high-order method, but it has known deficiencies, e.g., in the description of stretched bonds. The full configuration interaction (FCI) method is the most robust method for treating electronic correlations, but it is little used because its computational cost scales exponentially in the size of the system. The largest calculation that has been done to date employed 10 billion determinants. In this regard, there was a major advance in 2010. The Alavi group at Cambridge University developed a stochastic approach to FCI --- combining it with ideas from quantum Monte Carlo (QMC) --- called FCIQMC, that allows one to go to a far larger number of determinants in certain circumstances. The computational cost is exponential in the system and basis size but with a much reduced exponent compared to conventional FCI. In this project Umrigar's group made several major improvements to the FCIQMC method that increased its efficiency bymore » many orders of magnitude. In addition this project resulted in a cross-fertilization of ideas between the FCIQMC method, the older phaseless auxilliary-field quantum Monte Carlo (AFQMC) method developed by Zhang and Krakauer (two of the PI's of this project), and symmetry-restored wavefunctions developed by Scuseria (also a PI of this project).« less
  1. Cornell Univ., Ithaca, NY (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Cornell Univ., Ithaca, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
36 MATERIALS SCIENCE Quantum Monte Carlo methods; electronic structure theory