skip to main content

Title: Accelerating Development of Advanced Inverters.

Increasing the penetration of distributed renewable sources, including photovoltaic (PV) generators, poses technical challenges for grid management. The grid has been optimized over decades to rely on large centralized power plants with well-established feedback controls. Conventional generators provide relatively constant dispatchable power and help to regulate both voltage and frequency. In contrast, photovoltaic (PV) power is variable, is only as predictable as the weather, and provides no control action. Thus, as conventional generation is displaced by PV power, utility operation stake holders are concerned about managing fluctuations in grid voltage and frequency. Furthermore, since the operation of these distributed resources are bound by certain rules that require they stop delivering power when measured voltage or frequency deviate from the nominal operating point, there are also concerns that a single grid event may cause a large fraction of generation to turn off, triggering a black out or break-up of an electric power system.
 [1] ;  [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States