skip to main content

This content will become publicly available on March 14, 2016

Title: A thermal desorption spectroscopy study of hydrogen trapping in polycrystalline α-uranium

The kinetics of hydrogen desorption from polycrystalline α-uranium (α-U) was examined using thermal desorption spectroscopy (TDS). The goal was to identify the major trap sites for hydrogen and their associated trap energies. In polycrystalline α-U six TDS adsorption peaks were observed at temperatures of 521 K, 556 K, 607 K, 681 K, 793 K and 905 K. In addition, the desorption was determined to be second order based on peak shape. The position of the first three peaks was consistent with desorption from UH3. To identify the trap site corresponding to the high temperature peaks the data were compared to a plastically deformed sample and a high purity single crystal sample. The plastically deformed sample allowed the identification of trapping at dislocations while the single crystal sample allow for the identification of high angle boundaries and impurities. Thus, with respect to the desorption energy associated with each peak, values between 12.9 and 26.5 kJ/mole were measured.
 [1] ;  [2]
  1. Univ. of Akron, Akron, OH (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0022-3115; PII: S0022311515001695
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Nuclear Materials
Additional Journal Information:
Journal Volume: 461; Journal Issue: C; Journal ID: ISSN 0022-3115
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Country of Publication:
United States
42 ENGINEERING; 36 MATERIALS SCIENCE; alpha uranium; hydride; trap site; thermal desorption spectroscopy; TDS; activation energy; single crystal