skip to main content

Title: Scintillating Cocktail Mixtures and the Role of Water on the Optophysical Properties.

Two types of water - containing liquid scinti llation mixtures were prepared in the present work. In the first, m ixtures of 2 - phenylethanol, water, diphenyl phosphate, sodium phenyl phosphate dibasic dihydrate, and the dye 2,5 - diphenyloxazole (PPO) have been investigated as liquid scintillators. In th e second system, nonionic and mixed surfactant systems were investigated in conjunction with water and small amounts of toluene. In both cases, increasing amounts of water led to reductions in the scintillation light yield. Understanding what factors contr ibute to this phenomenon is the focus of this report. Changes in the solution microphase structure, diminishing aromatic content of the cocktail mixtures, and inefficient energy transfer to the dye a ppear to be responsible for the decreased light yield as more water is added . In the 2 - phenylethanol system, the observed experimental results are consistent with the formation of a bicontinuous microemulsion at higher water concentrations, which incorporates PPO and shields it from the quenching effects of the increasing polar matrix. Evidence for this proposed phase chan ge c ome s from light scattering data, photo - and x - ray luminescence measurements, and optical transparency measurements . In the surfactantmore » - based system, the quenching effect of water was found to be less than both commercially - available dioxane - naphthalene mixtures used for scintillation counting as well as the 2 - phenylethanol mixtures described above. The effect of different surfactant mixtures and concentrations were studied, revealing a benefic ial effect upon the scintillation light yield for mixed surfactant mixtures. These results are interpreted in the context of r eactive radical species formation following water ionization , which leads to light - yield quenching in aqueous systems . The presenc e of surfactant(s) in these mixtures enables the formation of organic - rich regions that are spatially separated from the reactive radicals. This hypothesis is consistent with subsequent experiments that showed reduced light - yield quenching in the presence of radical - trapping additives. A notable result from these surfactant studies was the preparation of an aqueous scintillator that was transparent and showed neutron/gamma pulse - shape discrimination. Section II below provides background information on the s ignificance of this finding. The combined work described herein has implications on other efforts to make water - based solution scintillators -- without aromatic content an efficient mechanism for ionizing radiation to sensitize emission from a dye is limited.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Sandia National Laboratories (SNL-CA), Livermore, CA (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States