skip to main content

Title: Superconductivity versus structural phase transition in the closely related Bi 2Rh 3.5S 2 and Bi 2Rh 3S 2

Single crystals of Bi 2Rh 3S 2 and Bi 2Rh 3.5S 2 were synthesized by solution growth, and the crystal structures and thermodynamic and transport properties of both compounds were studied. In the case of Bi 2Rh 3S 2, a structural first-order transition at around 165 K is identified by single-crystal diffraction experiments, with clear signatures visible in resistivity, magnetization, and specific heat data. No superconducting transition for Bi 2Rh 3S 2 was observed down to 0.5 K. In contrast, no structural phase transition at high temperature was observed for Bi 2Rh 3.5S 2; however, bulk superconductivity with a critical temperature, T c ≈ 1.7 K, was observed. The Sommerfeld coefficient γ and the Debye temperature (Θ D) were found to be 9.41 mJ mol –1K –2 and 209 K, respectively, for Bi 2Rh 3S 2, and 22 mJ mol –1K –2 and 196 K, respectively, for Bi 2Rh 3.5S 2. As a result, the study of the specific heat in the superconducting state of Bi 2Rh 3.5S 2 suggests that Bi 2Rh 3.5S 2 is a weakly coupled, BCS superconductor.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Iowa State Univ., Ames, IA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1098-0121; PRBMDO
Grant/Contract Number:
FA9550-09-1-0603; AC02-07CH11358
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 91; Journal Issue: 17; Journal ID: ISSN 1098-0121
American Physical Society (APS)
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
Country of Publication:
United States