skip to main content

SciTech ConnectSciTech Connect

Title: Nano-Composite Material Development for 3-D Printers

Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matrices and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.
Authors:
 [1]
  1. Texas Tech Univ., Lubbock, TX (United States)
Publication Date:
OSTI Identifier:
1226925
Report Number(s):
SAND2015--8893T
609816
DOE Contract Number:
AC04-94AL85000
Resource Type:
Thesis/Dissertation
Research Org:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 36 MATERIALS SCIENCE