skip to main content

Title: Power Hardware-in-the-Loop-Based Anti-Islanding Evaluation and Demonstration

The National Renewable Energy Laboratory (NREL) teamed with Southern California Edison (SCE), Clean Power Research (CPR), Quanta Technology (QT), and Electrical Distribution Design (EDD) to conduct a U.S. Department of Energy (DOE) and California Public Utility Commission (CPUC) California Solar Initiative (CSI)-funded research project investigating the impacts of integrating high-penetration levels of photovoltaics (PV) onto the California distribution grid. One topic researched in the context of high-penetration PV integration onto the distribution system is the ability of PV inverters to (1) detect islanding conditions (i.e., when the distribution system to which the PV inverter is connected becomes disconnected from the utility power connection) and (2) disconnect from the islanded system within the time specified in the performance specifications outlined in IEEE Standard 1547. This condition may cause damage to other connected equipment due to insufficient power quality (e.g., over-and under-voltages) and may also be a safety hazard to personnel that may be working on feeder sections to restore service. NREL teamed with the Florida State University (FSU) Center for Advanced Power Systems (CAPS) to investigate a new way of testing PV inverters for IEEE Standard 1547 unintentional islanding performance specifications using power hardware-in-loop (PHIL) laboratory testing techniques.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2]
  1. Florida State Univ., Tallahassee, FL (United States). Ceter for Advanced Power Systems (CAPS)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
Country of Publication:
United States
14 SOLAR ENERGY high-penetration PV; solar integration; power hardware-in-the-loop; PHIL; anti-islanding