skip to main content

Title: Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.
Authors:
; ; ;
Publication Date:
OSTI Identifier:
1225484
Report Number(s):
NREL/CP-5400-63898
DOE Contract Number:
AC36-08GO28308
Resource Type:
Conference
Resource Relation:
Conference: The 2015 American Control Conference;Chicago, IL; -
Research Org:
NREL (National Renewable Energy Laboratory (NREL)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE battery pack thermal management; lithium-ion battery; system modeling