skip to main content

Title: Understanding and Design of Polymer Device Interfaces

The research performed under grant DE-FG02-04ER46165 between May 2008 and April 2011 focused on the understanding and control of interfaces of organic semiconductors in general, and polymer interfaces more specifically. This work was a joined effort by three experimentalists and a theoretician. Emphasis was placed on the determination of the electronic structure of these interfaces, i.e. the relative energy position of molecular levels across these interfaces. From these electronic structures depend the injection, extraction and transport of charge carriers into, from and across, respectively, all (opto)electronic devices made of these semiconductors. A significant fraction of our work focused on ways to modify and optimize interfaces, for example via chemical doping of the semiconductors to reduce interface energy barriers or via deposition of ultra-thin work function-reducing polymer or self-assembled monolayers of dipolar molecules. Another significant fraction of our work was devoted to exploring alternate and unconventional interface formation methods, in particular the soft-contact lamination of both metal contacts and polymer overlayers on top of polymer films. These methods allowed us to better understand the impact of hot metal atom evaporation on a soft organic surface, as well as the key mechanisms that control the energetics of polymer/polymer heterojunctions. Finally, a significantmore » fraction of the research was directed to understanding the electronic structure of buried polymer heterojunctions, in particular within donor/acceptor blends of interest in organic photovoltaic applications. The work supported by this grant resulted in 17 publications in some of the best peer-reviewed journals of the field, as well as numerous presentations at US and international conferences.« less
  1. Princeton Univ., NJ (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Princeton Univ., NJ (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Contributing Orgs:
Princeton University, department of Electrical Engineering
Country of Publication:
United States
36 MATERIALS SCIENCE polymers; interfaces; electronic structure