skip to main content

Title: Molecular Breeding Algae For Improved Traits For The Conversion Of Waste To Fuels And Commodities.

This Exploratory LDRD aimed to develop molecular breeding methodology for biofuel algal strain improvement for applications in waste to energy / commodity conversion technologies. Genome shuffling technologies, specifically protoplast fusion, are readily available for the rapid production of genetic hybrids for trait improvement and have been used successfully in bacteria, yeast, plants and animals. However, genome fusion has not been developed for exploiting the remarkable untapped potential of eukaryotic microalgae for large scale integrated bio-conversion and upgrading of waste components to valued commodities, fuel and energy. The proposed molecular breeding technology is effectively sexual reproduction in algae; though compared to traditional breeding, the molecular route is rapid, high-throughput and permits selection / improvement of complex traits which cannot be accomplished by traditional genetics. Genome fusion technologies are the cutting edge of applied biotechnology. The goals of this Exploratory LDRD were to 1) establish reliable methodology for protoplast production among diverse microalgal strains, and 2) demonstrate genome fusion for hybrid strain production using a single gene encoded trait as a proof of the concept.
  1. Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
Sponsoring Org:
Country of Publication:
United States