skip to main content

Title: Total dissolved gas prediction and optimization in RiverWare

Management and operation of dams within the Columbia River Basin (CRB) provides the region with irrigation, hydropower production, flood control, navigation, and fish passage. These various system-wide demands can require unique dam operations that may result in both voluntary and involuntary spill, thereby increasing tailrace levels of total dissolved gas (TDG) which can be fatal to fish. Appropriately managing TDG levels within the context of the systematic demands requires a predictive framework robust enough to capture the operationally related effects on TDG levels. Development of the TDG predictive methodology herein attempts to capture the different modes of hydro operation, thereby making it a viable tool to be used in conjunction with a real-time scheduling model such as RiverWare. The end result of the effort will allow hydro operators to minimize system-wide TDG while meeting hydropower operational targets and constraints. The physical parameters such as spill and hydropower flow proportions, accompanied by the characteristics of the dam such as plant head levels and tailrace depths, are used to develop the empirically-based prediction model. In the broader study, two different models are developed a simplified and comprehensive model. The latter model incorporates more specific bubble physics parameters for the prediction of tailracemore » TDG levels. The former model is presented herein and utilizes an empirically based approach to predict downstream TDG levels based on local saturation depth, spillway and powerhouse flow proportions, and entrainment effects. Representative data collected from each of the hydro projects is used to calibrate and validate model performance and the accuracy of predicted TDG uptake. ORNL, in conjunction with IIHR - Hydroscience & Engineering, The University of Iowa, carried out model adjustments to adequately capture TDG levels with respect to each plant while maintaining a generalized model configuration. Validation results indicate excellent model performance with coefficient of determination values exceeding 92% for all sites. This approach enables model extension to an increasingly wider array of hydropower plants, i.e., with the proper data input, TDG uptake can be calculated independent of actual physical component design. The TDG model is used as a module in the systematic optimization framework of RiverWare, a river and reservoir modeling tool used by federal agencies, public utility districts, and other dam owners and operators to forecast, schedule, and manage hydropower assets. The integration and testing of the TDG module within RiverWare, led by University of Colorado s Center for Advanced Decision Support for Water and Environmental Systems (CADSWES), will allow users to generate optimum system schedules based on the minimization of TDG. Optimization analysis and added value will be quantified as system wide reductions in TDG achieved while meeting existing hydropower constraints. Future work includes the development of a method to predict downstream reservoir forebay TDG levels as a function of upstream reservoir tailrace TDG values based on river hydrodynamics, hydro operations, and reservoir characteristics. Once implemented, a holistic model that predicts both TDG uptake and transport will give hydropower operators valuable insight into how system-wide environmental effects can be mitigated while simultaneously balancing stakeholder interests.« less
 [1] ;  [1] ;  [1]
  1. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
WC0100000; CEWW099
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
Country of Publication:
United States