skip to main content

Title: Spin–orbit DFT with Analytic Gradients and Applications to Heavy Element Compounds

We have implemented the unrestricted DFT approach with one-electron spin–orbit operators in the massively parallel NWChem program. Also implemented is the analytic gradient in the DFT approach with spin–orbit interactions. The current capabilities include single-point calculations and geometry optimization. Vibrational frequencies can be calculated numerically from the analytically calculated gradients. The implementation is based on the spin–orbit interaction operator derived from the effective core potential approach. The exchange functionals used in the implementation are functionals derived for non-spin–orbit calculations, including GGA as well as hybrid functionals. Spin–orbit Hartree–Fock calculations can also be carried out. We have applied the spin–orbit DFT methods to the Uranyl aqua complexes. We have optimized the structures and calculated the vibrational frequencies of both (UO2 2+)aq and (UO2 +)aq with and without spin–orbit effects. The effects of the spin–orbit interaction on the structures and frequencies of these two complexes are discussed. We also carried out calculations for Th2, and several low-lying electronic states are calculated. Our results indicate that, for open-shell systems, there are significant effects due to the spin–orbit effects and the electronic configurations with and without spin–orbit interactions could change due to the occupation of orbitals of larger spin–orbit interactions.
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Theoretical Chemistry Accounts, 133:1588
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Environmental Molecular Sciences Laboratory