skip to main content

Title: Rutile-Deposited Pt–Pd clusters: A Hypothesis Regarding the Stability at 50/50 Ratio

Mixed Pt–Pd clusters deposited on oxides have been of great interest to catalysis. Clusters containing Pt and Pd in roughly equal proportions were found to be unusually stable against sintering, one of the major mechanisms of catalyst deactivation. After aging of such catalysts, the 50/50 Pt–Pd and Pd–O clusters appeared to be the two most prevalent phases. The reason for the enhanced stability of these equally proportioned clusters has remained unclear. In the following, sintering of mixed Pt–Pd clusters on TiO2(110) for various initial atomic concentrations of Pt and Pd and at a range of catalytically relevant temperatures was simulated. It is confirmed that equally mixed clusters have the relatively highest survival rate. Surprisingly, subnanoclusters containing Pt and Pd in all proportions have very similar geometries and chemical bonding, revealing no apparent explanation for favoring the 1:1 Pt/Pd ratio. However, it was discovered that at high temperatures, the 50/50 clusters have considerably more thermally accessible isomers than clusters containing Pt and Pd in other proportions. Hence, one of the reasons for stability is entropic stabilization. Electrostatics also plays a key role as a subtle charge redistribution, and a shift of electron density to the slightly more electronegative Pt results inmore » the partially charged atoms being further stabilized by intracluster Coulomb attraction; this effect is greatest for 1:1 mixtures.« less
; ;
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: ACS Catalysis, 4(10):3570–3580
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Environmental Molecular Sciences Laboratory