skip to main content

Title: Nitrate bioreduction in redox-variable low permeability sediments

Denitrification is a microbial process that reduces nitrate and nitrite to nitrous oxide (N2O) or dinitrogen (N2) with a strong implication to global nitrogen cycling and climate change. This paper reports the effect of sediment redox conditions on the rate and end product of denitrification. The sediments were collected from a redox transition zone consisting of oxic and reduced layers at US Department of Energy’s Hanford Site where N2O was locally accumulated in groundwater. The results revealed that denitrification rate and end product varied significantly with initial sediment redox state. The denitrification rate was relatively faster, limited by organic carbon content and bioavailability in the oxic sediment. In contrast, the rate was much slower in the reduced sediment, limited by biomass and microbial function. A significant amount of N2O was accumulated in the reduced sediment; while in the oxic sediment, N2O was further reduced to N2. RT-PCR analysis revealed that nosZ, the gene that codes for N2O reductase, was below detection in the reduced sediment. The results implied that redox transition zones can be important sinks or sources of N2O depending on local biogeochemical and microbial conditions, and are important systems for understanding and modeling denitrification in subsurface environments.
; ; ; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
48205; KP1702030
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Science of the Total Environment, 539:185-195
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
denitrification, nosZ gene, nitrate reduction, subsurface, redox transition zone; Environmental Molecular Sciences Laboratory