skip to main content

This content will become publicly available on July 8, 2016

Title: Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites

Perovskite structured oxides (ABO3) are attractive for a number of technological applications, including as superionics because of the high oxygen conductivities they exhibit. Double perovskites (AA’BB’O6) provide even more flexibility for tailoring properties. Using accelerated molecular dynamics, we examine the role of cation ordering on oxygen vacancy mobility in one model double perovskite SrLaTiAlO6. We find that the mobility of the vacancy is very sensitive to the cation ordering, with a migration energy that varies from 0.6 to 2.7 eV. In the extreme cases, the mobility is both higher and lower than either of the two end member single perovskites. Further, the nature of oxygen vacancy diffusion, whether one-dimensional, two-dimensional, or three-dimensional, also varies with cation ordering. We correlate the dependence of oxygen mobility on cation structure to the distribution of Ti4+ cations, which provide unfavorable environments for the positively charged oxygen vacancy. The results demonstrate the potential of using tailored double perovskite structures to precisely control the behavior of oxygen vacancies in these materials.
 [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0897-4756
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 27; Journal Issue: 14; Journal ID: ISSN 0897-4756
American Chemical Society (ACS)
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States