skip to main content

Title: A Meta-Analysis of Single-Family Deep Energy Retrofit Performance in the U.S.

The current state of Deep Energy Retrofit (DER) performance in the U.S. has been assessed in 116 homes in the United States, using actual and simulated data gathered from the available domestic literature. Substantial airtightness reductions averaging 63% (n=48) were reported (two- to three-times more than in conventional retrofits), with average post-retrofit airtightness of 4.7 Air Changes per House at 50 Pascal (ACH50) (n=94). Yet, mechanical ventilation was not installed consistently. In order to avoid indoor air quality (IAQ) issues, all future DERs should comply with ASHRAE 62.2-2013 requirements or equivalent. Projects generally achieved good energy results, with average annual net-site and net-source energy savings of 47%±20% and 45%±24% (n=57 and n=35), respectively, and carbon emission reductions of 47%±22% (n=23). Net-energy reductions did not vary reliably with house age, airtightness, or reported project costs, but pre-retrofit energy usage was correlated with total reductions (MMBtu).
 [1] ;  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B)
Country of Publication:
United States
lbnl, deep energy retrofit,