skip to main content

Title: Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.
Authors:
 [1] ;  [1] ;  [1] ;  [2] ;  [3] ;  [3] ;  [4] ;  [4] ;  [4] ;  [4]
  1. National Renewable Energy Laboratory (NREL), Golden, CO (United States)
  2. DWH Process Consulting, Denver, CO (United States)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  4. Harris Group Inc., Denver, CO (United States)
Publication Date:
OSTI Identifier:
1215007
Report Number(s):
NREL/TP-5100-62455
DOE Contract Number:
AC36-08GO28308
Resource Type:
Technical Report
Research Org:
NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B)
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS FAST PYROLYSIS; IN SITU; EX SITU; VAPOR PHASE UPGRADING; CATALYTIC FAST PYROLYSIS; HYDROTREATING; HYDROCRACKING