skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly

Journal Article · · Nucleic Acids Research
DOI:https://doi.org/10.1093/nar/gkt860· OSTI ID:1211383

In vitro recombination methods have enabled one-step construction of large DNA sequences from multiple parts. Although synthetic biological circuits can in principle be assembled in the same fashion, they typically contain repeated sequence elements such as standard promoters and terminators that interfere with homologous recombination. Here we use a computational approach to design synthetic, biologically inactive unique nucleotide sequences (UNSes) that facilitate accurate ordered assembly. Importantly, our designed UNSes make it possible to assemble parts with repeated terminator and insulator sequences, and thereby create insulated functional genetic circuits in bacteria and mammalian cells. Using UNS-guided assembly to construct repeating promoter-gene-terminator parts, we systematically varied gene expression to optimize production of a deoxychromoviridans biosynthetic pathway in Escherichia coli. We then used this system to construct complex eukaryotic AND-logic gates for genomic integration into embryonic stem cells. Construction was performed by using a standardized series of UNS-bearing BioBrick-compatible vectors, which enable modular assembly and facilitate reuse of individual parts. UNS-guided isothermal assembly is broadly applicable to the construction and optimization of genetic circuits and particularly those requiring tight insulation, such as complex biosynthetic pathways, sensors, counters and logic gates.

Sponsoring Organization:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
DOE Contract Number:
DE-AR0000079
OSTI ID:
1211383
Journal Information:
Nucleic Acids Research, Vol. 42, Issue 1; ISSN 0305-1048
Country of Publication:
United States
Language:
English

Similar Records

Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications
Journal Article · Thu Aug 07 00:00:00 EDT 2014 · NATURE PROTOCOLS · OSTI ID:1211383

BglBricks: A flexible standard for biological part assembly
Journal Article · Wed Jan 20 00:00:00 EST 2010 · Journal of Biological Engineering · OSTI ID:1211383

Construction of genetic logic gates based on the T7 RNA polymerase expression system in Rhodococcus opacus PD630
Journal Article · Tue Jul 30 00:00:00 EDT 2019 · ACS Synthetic Biology · OSTI ID:1211383

Related Subjects