skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels

Journal Article · · Nature Chemistry
DOI:https://doi.org/10.1038/NCHEM.1918· OSTI ID:1211215

Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

Sponsoring Organization:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
DOE Contract Number:
DE-AR0000180
OSTI ID:
1211215
Journal Information:
Nature Chemistry, Vol. 6, Issue 5; ISSN 1755-4330
Country of Publication:
United States
Language:
English

Similar Records

Photoswitchable Molecular Rings for Solar-Thermal Energy Storage
Journal Article · Thu Mar 21 00:00:00 EDT 2013 · Journal of Physical Chemistry Letters · OSTI ID:1211215

Hybrid chromophore/template nanostructures: A customizable platform material for solar energy storage and conversion
Journal Article · Mon Jan 21 00:00:00 EST 2013 · Journal of Chemical Physics · OSTI ID:1211215

Morphological Transitions of a Photoswitchable Aramid Amphiphile Nanostructure
Journal Article · Thu Mar 18 00:00:00 EDT 2021 · Nano Letters · OSTI ID:1211215

Related Subjects