skip to main content

This content will become publicly available on December 31, 2014

Title: Optimizing Monitoring Designs under Alternative Objectives

This paper describes an approach to identify monitoring designs that optimize detection of CO2 leakage from a carbon capture and sequestration (CCS) reservoir and compares the results generated under two alternative objective functions. The first objective function minimizes the expected time to first detection of CO2 leakage, the second more conservative objective function minimizes the maximum time to leakage detection across the set of realizations. The approach applies a simulated annealing algorithm that searches the solution space by iteratively mutating the incumbent monitoring design. The approach takes into account uncertainty by evaluating the performance of potential monitoring designs across a set of simulated leakage realizations. The approach relies on a flexible two-tiered signature to infer that CO2 leakage has occurred. This research is part of the National Risk Assessment Partnership, a U.S. Department of Energy (DOE) project tasked with conducting risk and uncertainty analysis in the areas of reservoir performance, natural leakage pathways, wellbore integrity, groundwater protection, monitoring, and systems level modeling.
 [1] ; ;  [1] ;
  1. Pacific Northwest National Laboratory
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Energy Procedia
Additional Journal Information:
Journal Volume: 63; Journal Issue: C; Journal ID: ISSN 1876-6102
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org:
Country of Publication:
United States
54 ENVIRONMENTAL SCIENCES; monitoring design; optimization; carbon capture and sequestration; CCS