skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design Support of an Above Cap-rock Early Detection Monitoring System using Simulated Leakage Scenarios at the FutureGen2.0 Site

Journal Article · · Energy Procedia

The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to evaluate CO2 mass balance and detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the reservoir, and early-leak-detection monitoring directly above the primary confining zone. This preliminary modeling study described here focuses on hypothetical leakage scenarios into the first permeable unit above the primary confining zone (Ironton Sandstone) and is used to support assessment of early-leak detection capabilities. Future updates of the model will be used to assess potential impacts on the lowermost underground source of drinking water (Saint Peter Sandstone) for a range of theoretical leakage scenarios. This preliminary modeling evaluation considers both pressure response and geochemical signals in the overlying Ironton Sandstone. This model is independent of the FutureGen 2.0 reservoir model in that it does not simulate caprock discontinuities, faults, or failure scenarios. Instead this modeling effort is based on theoretical, volumetric-rate based leakage scenarios. The scenarios include leakage of 1% of the total injected CO2 mass, but spread out over different time periods (20, 100, and 500 years) with each case yielding a different mass flux (i.e., smaller mass fluxes for longer duration leakage cases]. A brine leakage scenario using a volumetric leakage similar to the 20 year 1% CO2 case was also considered. A framework for the comparison of the various cases was developed based on the exceedance of selected pressure and geochemical thresholds at different distances from the point of leakage and at different vertical positions within the Ironton Sandstone. These preliminary results, and results from an updated models that incorporate additional site-specific characterization data, support development/refinement of the monitoring system design.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
Grant/Contract Number:
AC05-76RL01830
OSTI ID:
1209005
Journal Information:
Energy Procedia, Vol. 63, Issue C; ISSN 1876-6102
Publisher:
ElsevierCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science