skip to main content

Title: Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for the expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed tomore » develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the Screening Matrix tests. A set of Cast Stone formulations were devised to augment the original screening test matrix and focus on the range of the test conditions. Fly ash and blast furnace slag were limited to either northwest or southeast and the salt solutions were narrowed to the Average and the SST Blend at the 7.8M Na concentration. To fill in the matrix, a mix ratio of 0.5 was added. In addition, two admixtures, Xypex Admix C-500 and Rheomac SF100 (silica fume), were added as an additional dry material binder in select compositions. As in the Screening Matrix, both fresh and cured properties were evaluated for the formulations. In this study, properties that were influenced by the W/DM ratio in the Screening Matrix; flow diameter, plastic viscosity, density, and compressive strength, showed consistent behavior with respect to W/DM. The leach index for highly soluble components, sodium and nitrate, were not influenced by changes in formulation or the admixtures. The leach index for both iodine and Tc-99 show an influence from the addition of the admixture, Xypex Admix C-500. Additional testing should be performed to further evaluate the influence of Xypex Admix C-500 on the leach index over a range of admixture concentrations, Cast Stone formulations, and curing and storage conditions.« less
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
Publication Date:
OSTI Identifier:
1204362
Report Number(s):
SRNL-STI--2014-00619
TRN: US1500329
DOE Contract Number:
AC09-08SR22470
Resource Type:
Technical Report
Research Org:
Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
Sponsoring Org:
USDOE Office of Environmental Management (EM)
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; LOW-LEVEL RADIOACTIVE WASTES; WASTE FORMS; FLY ASH; UNDERGROUND STORAGE; TECHNETIUM 99; LEACHING; IODINE; SODIUM; SOLUTIONS; TANKS; SILICA; TESTING; WASHINGTON; BLAST FURNACES; COMPARATIVE EVALUATIONS; COMPRESSION STRENGTH; CURING; DENSITY; NITRATES; SOLIDIFICATION; WATER; BINDERS; DESIGN; SALTS; SLAGS; VISCOSITY; HANFORD ENGINEERING DEVELOPMENT LABORATORY; PARAMETRIC ANALYSIS; MIXTURES; SIMULATION Cast Stone