skip to main content

SciTech ConnectSciTech Connect

Title: REDUCING UNCERTAINTIES IN MODEL PREDICTIONS VIA HISTORY MATCHING OF CO2 MIGRATION AND REACTIVE TRANSPORT MODELING OF CO2 FATE AT THE SLEIPNER PROJECT

An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximate match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral)more » was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for CCUS have used the conventional rate law and therefore simulated the upper bound of mineral trapping. However, neglecting the regional flow after injection, as most previous RTM studies have done, artificially limits the extent of geochemical reactions as if it were in a batch system. By replenishing undersaturated groundwater from upstream, the Utsira Sand is reactive over a time scale of 10,000 years. The results from this project have been communicated via five peer-reviewed journal articles, four conference proceeding papers, and 19 invited and contributed presentations at conferences and seminars.« less
Authors:
Publication Date:
OSTI Identifier:
1202196
DOE Contract Number:
FE0004381
Resource Type:
Technical Report
Research Org:
Trustees Of Indiana University
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
20 FOSSIL-FUELED POWER PLANTS; 54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES