skip to main content

Title: The role of wellbore remediation on the evolution of groundwater quality from CO₂ and brine leakage

Long-term storage of CO₂ in underground reservoirs requires a careful assessment to evaluate risk to groundwater sources. The focus of this study is to assess time-frames required to restore water quality to pre-injection levels based on output from complex reactive transport simulations that exhibit plume retraction within a 200-year simulation period. We examined the relationship between plume volume, cumulative injected CO₂ mass, and permeability. The role of mitigation was assessed by projecting falloffs in plume volumes from their maximum peak levels with a Gaussian function to estimate plume recovery times to reach post-injection groundwater compositions. The results show a strong correlation between cumulative injected CO₂ mass and maximum plume pH volumes and a positive correlation between CO₂ flux, cumulative injected CO₂, and plume recovery times, with secondary dependence on permeability.
 [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
Accepted Manuscript
Journal Name:
Energy Procedia
Additional Journal Information:
Journal Volume: 63; Journal Issue: C; Journal ID: ISSN 1876-6102
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
Country of Publication:
United States
54 ENVIRONMENTAL SCIENCES; uncertainty quantification; CO₂; storage; risk assessment; reactive transport; groundwater; wellbore mitigation; plume recovery